17 research outputs found

    (A∞,2)(A_\infty,2)-categories and relative 2-operads

    Get PDF
    We define the notion of a 2-operad relative to an operad, and prove that the 2-associahedra form a 2-operad relative to the associahedra. Using this structure, we define the notions of an (A∞,2)(A_\infty,2)-category and (A∞,2)(A_\infty,2)-algebra in spaces and in chain complexes over a ring. Finally, we show that for any continuous map A→XA \to X, we can associate an (A∞,2)(A_\infty,2)-algebra θ(A→X)\theta(A \to X) in Top\textsf{Top}, which specializes to θ(pt→X)=Ω2X\theta(\text{pt} \to X) = \Omega^2 X and θ(A→pt)=ΩA×ΩA\theta(A \to \text{pt}) = \Omega A \times \Omega A

    Modulational Instability in Equations of KdV Type

    Full text link
    It is a matter of experience that nonlinear waves in dispersive media, propagating primarily in one direction, may appear periodic in small space and time scales, but their characteristics --- amplitude, phase, wave number, etc. --- slowly vary in large space and time scales. In the 1970's, Whitham developed an asymptotic (WKB) method to study the effects of small "modulations" on nonlinear periodic wave trains. Since then, there has been a great deal of work aiming at rigorously justifying the predictions from Whitham's formal theory. We discuss recent advances in the mathematical understanding of the dynamics, in particular, the instability of slowly modulated wave trains for nonlinear dispersive equations of KdV type.Comment: 40 pages. To appear in upcoming title in Lecture Notes in Physic

    Co-periodic stability of periodic waves in some Hamiltonian PDEs

    No full text
    International audienceThe stability theory of periodic traveling waves is much less advanced than for solitary waves, which were first studied by Boussinesq and have received a lot of attention in the last decades. In particular, despite recent breakthroughs regarding periodic waves in reaction-diffusion equations and viscous systems of conservation laws [Johnson–Noble–Rodrigues–Zumbrun, Invent math (2014)], the stability of periodic traveling wave solutions to dispersive PDEs with respect to 'arbitrary' perturbations is still widely open in the absence of a dissipation mechanism. The focus is put here on co-periodic stability of periodic waves, that is, stability with respect to perturbations of the same period as the wave, for KdV-like systems of one-dimensional Hamiltonian PDEs. Fairly general nonlinearities are allowed in these systems, so as to include various models of mathematical physics, and this precludes complete integrability techniques. Stability criteria are derived and investigated first in a general abstract framework, and then applied to three basic examples that are very closely related, and ubiquitous in mathematical physics, namely, a quasilinear version of the generalized Korteweg–de Vries equation (qKdV), and the Euler–Korteweg system in both Eulerian coordinates (EKE) and in mass Lagrangian coordinates (EKL). Those criteria consist of a necessary condition for spectral stability , and of a sufficient condition for orbital stability. Both are expressed in terms of a single function, the abbreviated action integral along the orbits of waves in the phase plane, which is the counterpart of the solitary waves moment of instability introduced by Boussinesq. However, the resulting criteria are more complicated for periodic waves because they have more degrees of freedom than solitary waves, so that the action is a function of N + 2 variables for a system of N PDEs, while the moment of instability is a function of the wave speed only once the endstate of the 1 solitary wave is fixed. Regarding solitary waves, the celebrated Grillakis–Shatah– Strauss stability criteria amount to looking for the sign of the second derivative of the moment of instability with respect to the wave speed. For periodic waves, stability criteria involve all the second order, partial derivatives of the action. This had already been pointed out by various authors for some specific equations, in particular the generalized Korteweg–de Vries equation — which is special case of (qKdV) — but not from a general point of view, up to the authors' knowledge. The most striking results obtained here can be summarized as: an odd value for the difference between N and the negative signature of the Hessian of the action implies spectral instability, whereas a negative signature of the same Hessian being equal to N implies orbital stability. Furthermore, it is shown that, when applied to the Euler–Korteweg system, this approach yields several interesting connexions between (EKE), (EKL), and (qKdV). More precisely, (EKE) and (EKL) share the same abbreviated action integral, which is related to that of (qKdV) in a simple way. This basically proves simultaneous stability in both formulations (EKE) and (EKL) — as one may reasonably expect from the physical point view —, which is interesting to know when these models are used for different phenomena — e.g. shallow water waves or nonlinear optics. In addition, stability in (EKE) and (EKL) is found to be linked to stability in the scalar equation (qKdV). Since the relevant stability criteria are merely encoded by the negative signature of (N + 2) × (N + 2) matrices, they can at least be checked numerically. In practice, when N = 1 or 2, this can be done without even requiring an ODE solver. Various numerical experiments are presented, which clearly discriminate between stable cases and unstable cases for (qKdV), (EKE) and (EKL), thus confirming some known results for the generalized KdV equation and the Nonlinear Schrödinger equation, and pointing out some new results for more general (systems of) PDEs

    Slow modulations of periodic waves in Hamiltonian PDEs, with application to capillary fluids

    Full text link
    Since its elaboration by Whitham, almost fifty years ago, modulation theory has been known to be closely related to the stability of periodic traveling waves. However, it is only recently that this relationship has been elucidated, and that fully nonlinear results have been obtained. These only concern dissipative systems though: reaction-diffusion systems were first considered by Doelman, Sandstede, Scheel, and Schneider [Mem. Amer. Math. Soc. 2009], and viscous systems of conservation laws have been addressed by Johnson, Noble, Rodrigues, and Zumbrun [preprint 2012]. Here, only nondissipative models are considered, and a most basic question is investigated, namely the expected link between the hyperbolicity of modulated equations and the spectral stability of periodic traveling waves to sideband perturbations. This is done first in an abstract Hamiltonian framework, which encompasses a number of dispersive models, in particular the well-known (generalized) Korteweg--de Vries equation, and the less known Euler--Korteweg system, in both Eulerian coordinates and Lagrangian coordinates. The latter is itself an abstract framework for several models arising in water waves theory, superfluidity, and quantum hydrodynamics. As regards its application to compressible capillary fluids, attention is paid here to untangle the interplay between traveling waves/modulation equations in Eulerian coordinates and those in Lagrangian coordinates. In the most general setting, it is proved that the hyperbolicity of modulated equations is indeed necessary for the spectral stability of periodic traveling waves. This extends earlier results by Serre [Comm. Partial Differential Equations 2005], Oh and Zumbrun [Arch. Ration. Mech. Anal. 2003], and Johnson, Zumbrun and Bronski [Phys. D 2010]. In addition, reduced necessary conditions are obtained in the small amplitude limit. Then numerical investigations are carried out for the modulated equations of the Euler--Korteweg system with two types of 'pressure' laws, namely the quadratic law of shallow water equations, and the nonmonotone van der Waals pressure law. Both the evolutionarity and the hyperbolicity of the modulated equations are tested, and regions of modulational instability are thus exhibited
    corecore